

PENTAGRID CONVERTER

I ENTAGRID CO				
Heater Coated Unipotenti	al Cath	ode		
Voltage 6.3		a-c or d-	-c volts	
Current 0.3 ^{III}			amp.	
Direct Interelectrode Capacitance	s:0			
Grid #3 to All Other Electrodes	& Base		_	
Shell (R-F Input)		9.0	μμf	
Plate to All Other Electrodes &	Base		_	
Shell (Mixer Output)	_	9.0	μμf	
Grid #1 to All Other Electrodes	& Base			
Shell		7.0	μμf	
Grid #3 to Plate		0.20 max.	μμf	
Grid #1 to Grid #3		0.20 max.	μμf	
Grid #1 to Plate		0.15 max.	μμf	
Grid #1 to All Other Electrodes	& Base	5 0	_	
Shell Except Cathode		5.0	μμf	
Grid #1 to Cathode		2.2	μμf	
Cathode to All Other Electrodes	& base	¢ 0	e	
Shell Except Grid #1		6.0	μμf	
Maximum Overall Length		2-25/3		
Maximum Seated Height		2-1/4 1-3/1		
Maximum Diameter		T-9		
Bulb Base		Lock-in		
Pin 1-Heater	_	Pin 6-Grid		
Pin 2-Plate	6	Pin 7 - Catho		
Pin 3-Grids #2 & #4 2	7)	Pin 8 - Heate		
Pin 4 – Grid #1		Plug - Base		
Pin 5 – Grid #5				
Mounting Position BOTTOM VIEW	(8AL)		Any	
CONVERTER SERVICE				
		300 max.	volts	
Plate Voltage Grids #2 & #4 Voltage		100 max.	volts	
Grids #2 & #4 Voltage Grids #2 & #4 Supply Voltage		300 max.	volts	
Grid #3 Voltage •		0 min.	volts	
Plate & Grids #2 & #4 Dissipation	(total)		watts	
Grids #2 & #4 Dissipation	(total)	1.0 max.	watt	
Total Cathode Current		14 max.	ma.	
Characteristics with Separate Exc	itation			
Plate Voltage	100	250	volts	
Grids #2 & #4 Voltage	100	100	volts	
Grid #3 (Control) Voltage	-2	- 2	volts	
Grid #5 Voltage	ō	ō	volts	
Grid #1 Resistor	20000	20000	ohms	
Plate Resistance	0.5		x.megohm	
Conversion Transcond.	525	550	µmhos	
Conversion Transcond. with				
Grid #3 Bias of -35 volts	2	2 appro	x. µmhos	
Plate Current	3.3	3.5	ma.	
Grids #2 & #4 Current	8.5	8.5	ma.	
Grid #1 Current	0.5	0.5	ma.	
Total Cathode Current	12.3	12.5	ma.	
See next page.				

101

PENTAGRID CONVERTER

(continued from preceding page)				
TE: The transconductance between Grid #1 and Grids #2 & #4 connect to plate (not oscillating) is approximately 4500 µmhos under t following conditions: Grids #1, #3, and #5 at 0 volts; Grids	the #2			
& #4 and plate at 100 volts. In circuits where the cathode is not directly connected to the heate the potential difference between heater and cathode should be kept	er, as			
low as possible. Nominal voltage = 7.0 volts. Nominal current = 0.32 ampere.				
With shield—can connected to cathode. With self—excited oscillator.	•			
These characteristics correspond very closely to those obtained wi zero bias in a self-excited oscillator circuit.	I th			
A typical self-excited converter circuit is shown under Type 6817.				
A typical Self-excited converter circuit is shown while Type obtain	•			